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Summary

Since mid-February, the Engineering Development Section (EDS) has been assisting the
High Level Waste (HLW) customer to assess the failure causes of the FLYGT mixer to be
used to recover waste from Tank 19 and to redesign the mixer.

In support of this project, two Computational Fluid Dynamics (CFD) models have been
developed. They are a steady-state pump model and a transient model considering the
effects of vapor formation due to pump cavitation. The commercial CFD code, FLUENT, is
used in the present analysis. The computations are performed for a three-dimensional
model of the FLYGT mixer with the prototypic propeller shape. In the models, the
propeller is assumed to be symmetrical and perfectly-balanced within a rigid and
stationary shroud boundary under any operating condition. Both of the models include the
propeller region, the inlet region upstream of the propeller, and the downstream shroud
region as computational domain.

The areas of focus for the analysis presented here are the flow performance of the
modified mixer under potential operating conditions and the loads on the propeller, shaft,
and shroud regions of the mixer. Calculated physical parameters include velocity profiles
of axial flow, cavitation locations, and loads on the shroud wall, propeller blade, and hub of
the propeller for the operating flow conditions. As inlet boundary conditions of the model,
uniform radial and axial velocities through the shroud inlet and around the motor housing
are used assuming azimuthally symmetrical flow conditions.

An operating flow condition of 9,000 gpm is established by the comparison of the steady-
state model predictions and HLW test data (Adkins, 2000) at the shroud exit. The results
of the model show that the modified mixer has reasonable performance for 9,000 gpm flow
and 500 rpm pump speed in terms of flow behavior and spread angle near the exit.

Sensitivity runs are performed for non-uniform inlet velocity along the axial flow direction,
different surface roughness of the shroud inner wall, and different pump speeds. From
the model results, the non-uniform inlet velocity and wall roughness effects are found to
have a negligible effect on overall flow patterns at the inner and outlet regions of the
shroud, loads on each pump component, and cavitation size near the tip of the blade as
long as liquid flow rate remains constant. The primary reason for these results is that
turbulent flow effect within the shroud is dominant due to the high-speed rotations of axial
propeller. Thus, it is noted that pump speed is the most sensitive one among the three
parameters in terms of flow performance and pump loading.

Transient model results show that transient flow behavior such as change of fluid density
and loadings of the mixer establish steady-state conditions within about 1 second,
corresponding to about 40 cycles of the propeller blade, after the initiation of the pump
cavitation. In addition, a low density region is established near the peripheral region
adjacent to the shroud wall because all bubbles generated as a result of cavitation migrate
to the high-velocity fluid region near the tip of the propeller blade.
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1. Background and Objective

The Engineering Modeling and Simulation Group (EMSG) was asked to perform an
analysis which could provide pertinent information in support of a modified High-Level
Waste (HLW) Tank 19 FLYGT mixer design. The modified FLYGT mixer will be used to
recover waste from the Tank 19. Under normal operating conditions, the mixer will be
oriented in a horizontal position above approximately 6 to 7 inches above the bottom of the
85 ft diameter tank. In this situation, the discharge from the shroud exit is the driving force
for liquid mixing and material suspension from the tank floor.

In previous work (Lee and Dimenna, 2000), two two-dimensional models were developed
to determine the optimum shroud length for acceptable flow performance and to conduct
sensitivity analysis for a wide range of possible boundary conditions at the shroud inlet
downstream of the pump propeller. One model was axisymmetric using the shroud alone
without the pump propeller as a modeling boundary. The other model was a two-
dimensional wall jet model to investigate asymmetric effects of the shroud discharge flow.

For the previous analysis (Ref. 8) and the present work, a Computational Fluid Dynamics
(CFD) approach has been taken. In the present analysis, a three-dimensional steady-
state pump model and a transient cavitation model have been developed to evaluate
detailed flow performance of the Tank 19 FLYGT mixer improved by the previous work.
The commercial CFD preprocessor and solver, GAMBIT and FLUENT5.3, have been used
to model the mixer. The geometry files of the mixer models have been created with the
integrated CFD preprocessor GAMBIT based on the propeller model. At the beginning of
April, Fluent Inc. was contracted to assist in the development of the propeller model based
on digital propeller shape data obtained from Michigan Wheel Company, who
manufactured the present propeller.

The present three-dimensional CFD models can identify a number of viscous flow
phenomena in the propeller flow field confined in the shroud region, including blade and
hub boundary layers, flow separation on the blade, hub and tip vortices, etc. Thus, the
models help estimate reasonable loading conditions for the optimum operating
performance of the mixer. Parametric sensitivity studies with the models also help identify
operation and design variations that may be used to improve the operational design of the
mixer from the aspect of pump flow performance. The main objectives of the present work
are as follows:

1. To examine detailed flow performance of the Tank 19 FLYGT mixer improved by the
previous work,

2. To conduct sensitivity analysis for a wide range of possible boundary conditions, and
3. Toinvestigate transient flow behavior and loading of the FLYGT mixer.

For the present study, a flow simulation method is developed to calculate the flow around
a marine-type propeller configuration of the FLYGT mixer. The flow characteristics of the
blade boundary layer and tip vortex are investigated by the CFD method. Comparisons
between calculation results and experimental data are made to demonstrate the capability
of the model to handle propeller flows. The analysis results for the mixer model provide
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design guidance concerning the operation performance of a modified mixer, and this
estimated loading information would be used as input to assess the structural vibration
and stress analysis of the FLYGT mixer.

Table 1. Modeling purpose and descriptions for Tank 19 FLYGT mixer.

Model Brief description Primary purpose Status
_ _ Shroud model using To assess the impact of shroud Done
Axisymmetric 2-D | two-dimensional CFD length on discharge flow
model . : (Ref. 8)
approach behavior for various
boundary conditions
Two-dimensional wall | To investigate asymmetric Done
_ jet model with the effect of the liquid discharge (Ref. 8)
2-Dwalljetmodel | nymp shroud from the optimum length of '
submerged in 4ft tank shroud due to the presence
level of the tank bottom
Detailed three- To assess pump flow Present
Steady- | dimensional pump performance in detail and to analysis
state model with prototypic evaluate load on propeller
3-D model | propeller blade shape blade, hub, and pump
FLYGT to exclude cavitation shroud in a steady-state
mixer model operation
model
Detailed three- To evaluate transient load on Present
Transient | dimensional pump propeller blade, hub, and analysis
model | model with prototypic pump shroud and to
propeller blade shape estimate transient time to
to include cavitation reach steady-state mode
model

2. Model Descriptions and Solution Methods

Two CFD models have been developed to examine the flow performance of the modified
Tank 19 FLYGT mixer (Lee and Dimenna, 2000) and to conduct sensitivity analysis for a
wide range of possible boundary conditions. The modeling purpose and brief descriptions
for the models are provided in Table 1. The methodology used for the models and
analysis of the FLYGT mixer are shown in Fig. 1. The computational domain for the mixer
model consists of three major regions, which are the propeller region, the inlet region
upstream of the propeller, and the shroud region downstream of the propeller. The
present modeling boundary is shown in Fig. 2.

For computational efficiency, a 120° sector of the mixer was used as a computational
domain by using the following assumptions:

- The blades of the propeller are perfectly balanced and symmetrical.
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- The clearance gap between the tip of the blade and the shroud wall is kept constant.

- The inlet geometry is symmetrical in terms of geometry and flow distribution in an
azimuthal direction.

- The flow distribution around the FLYGT mixer is fully mixed so that the wall boundary
of the tank bottom has no impact on flow pattern just outside the shroud wall.

About 120,000 mesh nodes were established from the mesh sensitivity analysis on a
Silicon Graphics, Inc. (SGI) workstation platform. The computational meshes on a three-
dimensional domain are shown in Fig. 3. It should be noted that both curved-side surfaces
of the 120 ° model were used as periodic boundaries for a rotational reference frame. Two
repetitions of the periodic boundaries result in a complete FLYGT mixer as shown in Figs.
4 and 5. For better convergence in numerical iterations, hexahedral meshes and smooth
propagation of mesh size were adapted along the fluid-stream direction as shown in Fig. 5.
The models assume isothermal conditions fixed at room temperature; the thermal effect on
the performance of the pump is not calculated.

One of the two models is a steady-state pump model assuming the fluid is incompressible
and is not affected by cavitation. The other one is a transient cavitation model to
investigate effects of density change due to the cavitating fluid for high-speed rotation of
propeller. As the fluid jet emerges from the tip of propeller blade, the boundary layer
separates at the cavity created near the leading-edge of the blade. Then, it rolls up and
produces the cavitation cloud. Reynolds number for one typical flow (corresponding to
about 9,000 gpm) of potential conditions, as shown in Table 2, is about 1.4 x 10° based on
shroud diameter (D = 0.5048m) and water at room temperature. That is,

Re=2"Y -1 4x10° )
m

The flow condition is in the fully-turbulent flow region. A standard k-e turbulent model,
namely, a two-equation model, was used for the present analysis. A velocity boundary
condition was used at the shroud inlet. At the exit, a pressure boundary condition was
used to determine flow pattern. The wall boundary of the shroud region used a no-slip
boundary condition.

The steady-state model used mass continuity and three standard momentum equations
with addition of Coriolis force to the convection term considering the rotating reference
frame. In this situtation, relative velocity becomes

V, =V - Wxr (2)

where
W = angular velocity of the rotating frame and

r = position vector in the rotating frame.

After some manipulation of the standard Navier-Stokes equation using equation (2), the
convection term (N - (r')) on the left-hand side of the momentum equation in a rotating
frame of reference becomes
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Equation (3) shows that two new terms, referred to as Coriolis force and centrifugal force,
respectively, in the literature, are added to the standard convection term for the rotational
effect.

The transient cavitation model relies on the volume fraction concept so that it allows the
fluids to be interpenetrating. The volume fraction of vapor phase created from the
cavitation can therefore be equal to any value between 0 and 1, depending on the space
occupied by vapor and liquid phases. The cavitation model allows mass to be transferred
from one phase to another. This allows for modeling the formation of vapor from a liquid
when fluid is cavitated. The model assumes no collapses of bubbles inside the shroud
region and no slip between the two phases of the fluid because bubble residence time
within the shroud is very short and bubbly flow regime is assumed to be dominant in the
modeling domain. Thus, FLUENT solves a single-phase momentum equation for both
phases and a volume fraction equation for the second phase. The volume fraction for the
secondary vapor phase is determined from the continuity relation with interphase mass
transfer from liquid to vapor phases. To get interphase mass transfer term, the change in
bubble radius can be computed by a simplified Rayleigh equation assuming that the
pressure within the bubble remains nearly constant when cavitation bubbles form in a
liquid at room temperature. The latent heat of vaporization is neglected in isothermal
cavitating flow. Bubble growth due to inertia effects is assumed negligible compared to
caviation pressure. In this situation, bubble radius R at time t is determined by the
following equation (Kubota et al., 1992):

ar _22p,-p)o"°
&g o ; @

where py is vapor pressure corresponding to fluid temperature and r ¢ is the density of the
liquid.

The total vapor mass (mg) can be written as

m

&l 30
=r_¢=pR°Mm 5
g gng ()

a
where n is the number of bubbles per unit volume.

Bubble number density (n) in eq. (5) was assumed to be constant. For the present work, n
was chosen as 1.0 x 10 m™ from the literature (Kubota el al. (1992)). After some
algebraic manipulation of eg. (5), rate of vapor formation due to cavitation can be written in
terms of void fraction (a,) as
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dmg aé%r g oaalpR3 O0elR 6
dt ;ag 3 ; dt g
_ B g3g &R0
R gdt ’
Thus, an equation for the interphase mass transfer (my,) due to cavitation can be obtained
from egs. (4) and (6). Thatis,

(6)

_dmg  a8rgaq t_‘ae?(pg - p)go'5
My = = : £ (7)
dt R & 3¢ 4

Equation (7) is used in the continuity equation for the vapor phase, which is created from
the cavitation phenomenon of the high-speed mixing pump.

Computations use the FLUENT rotating reference frame assumption in which the three-
dimensional flow field rotates in a reference frame that is fixed on the propeller blade.
When equations of motion are solved in the steady-rotating reference frame, the Coriolis
force term is added to the fluid acceleration term in the left-hand side of the Reynolds-
Averaged Navier-Stokes equations derived in the inertial frame. The three-dimensional
incompressible Navier-Stokes flow solver developed by Fluent, Inc. is applied to compute
the rotating propeller flow in Tank 19 FLYGT mixer. The FLUENT solver is based on
segregated solution method as shown in Fig. 6.

( HLW test data ] 2-D axisymmetric model

Y

Y

Operating conditions Optlmum shroud length
for the present model

~, /

Detailed 3-D FLYGT mixer model

(including cavitation e ffect)

\4

Fluent propeller model 2-D wall jet model
based on digitized

propeller shape data of
Tank 19 FLYGT mixer

Assessment of
flow performance
in a 4ft tank level

Figure 1. Analysis methodology for FLYGT mixer models
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Table 2. Potential ranges of flow conditions for Tank 19 FLYGT mixer

Flowrate | Flowrate | Mass flow Inlet flow area |Total flow area| Inlet velocity| Average Velocity*
(gpm) (m/sec) (kg/sec) | Radial (nf) | annular (nf) (md) (m/sec) (m/sec) | (ft/sec)
9000 |0.56781| 566.674 | 0.48340 | 0.07842 0.56182 1.011 2.8368 | 9.3071
10000 [0.63090| 629.638 | 0.48340 | 0.07842 0.56182 1.123 3.1520 |10.3413
11000 [0.69399| 692.602 | 0.48340 | 0.07842 0.56182 1.235 3.4672 |11.3754
12000 |0.75708| 755.566 | 0.48340 | 0.07842 0.56182 1.348 3.7824 112.4095
12500 |0.78863| 787.048 | 0.48340 | 0.07842 0.56182 1.404 3.9400 |12.9266
13000 |0.82017| 818.530 | 0.48340 | 0.07842 0.56182 1.460 4.0976 |13.4437
13500 |0.85172| 850.012 | 0.48340 | 0.07842 0.56182 1.516 4.2552 113.9607
14000 |0.88326| 881.493 | 0.48340 | 0.07842 0.56182 1572 4.4128 |14.4778
14500 |0.91481| 912.975 | 0.48340 | 0.07842 0.56182 1.628 4.5704 |114.9948
15000 |0.94635| 944.457 | 0.48340 | 0.07842 0.56182 1.684 4.7280 |15.5119
15500 [0.97790| 975.939 ([ 0.48340 | 0.07842 0.56182 1.741 4.8856 |16.0290
16000 |[1.00944| 1007.421| 0.48340 | 0.07842 0.56182 1.797 5.0432 |16.5460
16500 [1.04099| 1038.903 | 0.48340 | 0.07842 0.56182 1.853 5.2008 |17.0631
17000 [1.07253| 1070.385( 0.48340 | 0.07842 0.56182 1.909 5.3584 |17.5802
18000 (1.13562| 1133.349( 0.48340 | 0.07842 0.56182 2.021 5.6736 |18.6143
19000 |[1.19871|1196.313| 0.48340 | 0.07842 0.56182 2.134 5.9888 |19.6484

Note: * Average velocity was based on the cross-sectional flow area of the shroud.
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Figure 3. Meshes on three-dimensional domain
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Figure 4. The blade and shaft surface grid after two repetitions of periodic boundary
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Figure 5. Two-dimensional meshes at exit plane after two periodic repetitions of the
present model
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Figure 6. Overview of segregated solution method for the present model

3. Investigation of the Nominal Pump Operating
Conditions

As discussed earlier, a detailed CFD model of mixing performance using a high speed
mixing pump within a large stagnant liquid tank was used to study the behavior of a
submerged axisymmetric mixing pump. The mixing pump is defined as a mixer which is
not obstructed by any solid boundary in its vicinity. The mixer generates relatively large
circulation flows and mixes with the surrounding fluid forming shear layers all around. This
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is different from the mixer pump within Tank 19, which sucks liquid near the tank bottom
(about 6 inches above the tank bottom) and discharges it in a horizontal direction parallel
to the tank bottom. In this situation, the interaction between the wall and the mixer
changes the flow pattern due to presence of the no-slip boundary in the direction parallel
to the bottom plane. Sensitivity calculations showed that nonuniformity in the inlet flow
distribution had a negligible effect on the discharge flow pattern. Therefore, the inlet flow
distribution is modeled as azimuthally symmetrical. This assumption is expected to be
valid for highly turbulent and chaotic flow around the pump inlet.

Recently, HLW personnel performed an experimental investigation of structural pump
stability and flow velocity measurements at the shroud exit under a 4 ft liquid level. The
velocity measurement was based on a pitot-tubes, and located 2 inch from the top and
bottom of the shroud wall. ' In this experiment, three different pump speeds of 600, 700,
and 860 rpm were used. The asymmetry effect of the flow velocity at shroud exit was
found to be negligible. The results also showed that the velocity at the center of the
shroud was much smaller than the velocity adjacent to the shroud wall.

The present CFD model estimated nominal operating flow conditions using the HLW test
data measured at the exit of shroud. The CFD results are compared with the test data for
a range of pump flowrates (9,000 to 12,000 gpm) as shown in Fig. 7. Figure 8 also shows
the comparative results for three different pump speeds with an assumption of 9,000 gpm
flowrate. From this comparison and the HLW test data, nominal operating flowrate of the
FLYGT mixer was estimated to be about 9,000 gpm. This flowrate is about half of the
original estimated flowrate and raises a question about the driving force for the liquid
mixing and material suspension for the tank floor.

The liquid flow velocity induced by the FLYGT mixer in Tank 19 is the driving force to
effect suspension and mixing of particles or sludge components in the waste tank. The
efficiency of this mixing process primarily depends on several key parameters that affect
the liquid flow performance, such as axial flow velocity, flow direction of the mixer
discharge, and the location of the mixer. Thus, the axial flow velocity at a 40 ft distance
from the shroud exit should be examined to see if 9,000 gpm pump flow can deliver
acceptable flow performance.

The present model does not include the fluid region outside the shroud of the mixer as
shown in Fig. 2. From the previous two-dimensional wall jet model (Ref. 8), the maximum
velocity at a 40 ft distance from the shroud exit was estimated to be about 5.6 ft/sec for an
inlet velocity boundary condition corresponding to 9,000 gpm as shown in Table 2.
Detailed flow distribution at the plane 40 ft away from the shroud exit is presented as a
function of height above the tank bottom in Fig. 9. As shown in Fig. 10, it is noted that the
axial flow is asymmetrically developed by the presence of the tank wall as fluid moves to
the downstream region of the shroud. In Fig. 11, flow velocity vector plot in the
neighborhood of the pump shroud is shown when the inlet velocity at the downstream
region of the propeller is highly non-uniform. Detailed velocity contour plots above the
tank bottom are shown in Fig. 12. It is found that the two-dimensional results are
consistent with the three-dimensional model results in the predictions of flow patterns
within the shroud.
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Figure 7. Comparison of predictions with test data
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Figure 9. Axial velocity distribution as a function of liquid level at the 40ft distance from the
shroud exit based on two-dimensional wall jet model (Lee and Dimenna,
2000) for 9,000 gpm pump flowrate. inlet velocity is uniformly 45° skewed

against the axial flow direction (8;, = 45° in the figure).
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wall jet model (Lee and Dimenna, 2000) for 9,000 gpm pump flowrate. Inlet
velocity is increased linearly along the radial direction.
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4. Results and Discussions

The results characterizing the overall flow behavior seen in the present calculations using
the detailed three-dimensional CFD model with a prototypic propeller shape show a
reasonably good representation of turbulent flow behavior. The three-dimensional
computational domain and boundary for the model is shown in Fig. 1. The standard k-e
model was used to capture the turbulent flow behavior of the FLYGT mixer. The flow
velocity at the inlet of the mixer was about 3.3 ft/sec corresponding to 9,000 gpm flow as
shown in Table 2. The inlet velocity was computed by assuming uniform flow distribution
over the inlet geometry. The motor housing represents a flow blockage in the inlet region.
Rotational effects of the pump propeller and hub regions were modeled by using the
moving reference frame. The Reynolds number (Re) at the inlet is about 1.4 x 10° for
liquid water at room temperature, which corresponds to the fully-turbulent flow regime.
Pressures shown in all contour plots of this report should be considered as gauge
pressure with respect to one atmospheric pressure unless there is any description about
the pressure.

4.1 Steady-State Results

All steady-state calculations were performed for turbulent flow using 120-deg symmetry
and an unstructured mesh under a rotating reference frame. The turbulence effect in the
model was represented by a two-equation model, standard k-e model. The calculations
have been performed under steady-state conditions to evaluate the loads on the propeller,
hub, and shroud regions of the mixer under the operating flow conditions of 9,000 to
19,000 gpm. In addition, the steady-state model has been used to examine how sensitive
the pump flow performance or cavitation phenomenon associated with deterioration of the
pump performance is to a change of operating parameters or conditions. In this model,
the density change due to pump cavitation was not considered. The main operating
parameters used in the present analysis are rotational speed of the propeller, pump
flowrate, flow profile entering the pump propeller, and surface roughness of shroud wall.

As mentioned earlier, the nominal operating flow condition was estimated by the steady-
state CFD model using the HLW data (Adkins, 2000) measured at the shroud exit. From
the present analysis and the literature, it is noted that pump cavitation is closely related to
the pump performance in terms of performance deterioration and structural stability. The
results showed that most cavitation occurred near the leading-edge tip of the pump blade
as shown in Fig. 13. As shown in the figure, the lowest pressure is in the upstream region
of the propeller blade causing the cavitation, while the highest pressure is in the
downstream region of the blade. Table 3 shows minimum and maximum pressures
around the leading tip of the propeller blade. The pressure difference across the leading-
edge tip of the blade was about 38 psi for 860 rpm rotational speed as shown in Table 3.
This is consistent with the literature data on the blade tips of ships’ propellers. In the
literature, this type of cavitation is often referred to as tip cavitation. Thus, this cavitation is
caused by vorticity shed into the flow field just downstream of the blade tip. The results in
Table 3 shows that cavitation doesn’t occur when pump speed is lower than 500 rpm.

Figure 14 shows typical flow pattern and vorticity distributions near the downstream and
upstream regions of the leading tip of the propeller blade. Maximum radial velocity
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occurred near the tip of the blade. Table 4 shows maximum radial and axial velocities for
various pump speeds at the leading-edge tip of the propeller blade for nominal operating
flow condition (9,000 gpm). In this situation, maximum flowrate was artificially kept
constant for different pump speeds for the simulation of performance deterioration. When
pump speed increased under the condition of flow constraint, radial velocity at the blade
tip increased quickly, but maximum axial velocity was not changed as expected.

Vorticity is a measure of the instantaneous rotation rate of the fluid on the principal axes.
The vorticity (v') is defined as

v =Nxv (8)

The usefulness of vorticity in interpreting fluid flow patterns is that vorticity tracks only the
effects of viscous force. This can be seen by noting that the viscous term in the
momentum equation of incompressible flow can be written as

N-t =% = - mxv’ (9)

Thus, unbalanced shear stress (t) generates vorticity. Pressure forces and gravity forces

in the momentum equation act through the center of mass of a particle and can not
produce vorticity.

Under a steady-state flow condition, loads on pump blades, hub, and shroud have been
estimated by the present CFD pump model for a wide rage of flowrates and pump speeds.
All the results are shown in Table 5. The results showed that pressure force was
dominant compared to viscous force. For a given flowrate, total load for each of the three
regions increased rapidly as pump speed increased.

Table 3. Pressures near the leading-edge tip of the pump blade under 9,000 gpm water
flowrate of steady-state operating condition (Water saturation pressure
corresponding to room temperature is about -14.3 psig.).

Pump speed 500 rpm 600 rpm 700 rpm 860 rpm
Upstream pressure -10.2 psig -13.4 psig -18.6 psig | -28.6 psig
Downstream pressure 4.6 psig 4.6 psig 4.7 psig 9.4 psig

Table 4. Maximum axial and radial velocities for various pump speeds at the leading-edge
tip of the pump blade under 9,000 gpm flow constraint of steady-state condition.

Pump speed 500 rpm 600 rpm 700 rpm 860 rpm
Max. radial velocity 5.6 m/sec 6.8 m/sec 8.1 m/sec 11.1 m/sec
Max. axial velocity | 10.5 m/sec 10.6 m/sec 10.8 m/sec 10.8 m/sec
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Changes in flowrate are harder to interpret because the flowrate was used a boundary
condition for the calculation. As the flowrate was decreased for a given pump speed, the
propeller became starved for flow. Cavitation increased and the pressure loads on the
mixer components increased. All of this indicated a deterioration in pump performance
with reduced flow.

As shown in Fig. 15, load for the propeller blade is the largest among the three regions. It
is noted that load for each component is not sensitive to the pump flowrate. Figure 16
shows that radial velocity at the tip of the blade is very sensitive to the rotational speed of
the mixer. When pump speed increased from 500 to 860 rpm, maximum radial speed
increased from 5.6 m/sec to 11.1 m/sec as shown in Table 4. Static pressure distributions
corresponding to the velocity distributions are quite different depending on rotational
speed of the mixing pump as presented in Fig. 17. These pressure distributions induce
the load for each component of the mixer. As expected from our intuition, a large and
localized vortex motion is generated near the leading-edge tip of the propeller blade. This
large vortex motion introduces the cavitation, referred to as vortex cavitation in the
literature (Knapp et al., 1970). Vorticity contour plots for the plane crossing the tip of the
blade are shown in Fig. 18. The pressure coefficient along the axial flow direction crossing
the leading-edge tip of the blade, as shown in fig. 19, indicates that the location of the
minimum pressure is very close to the tip of the blade. This implies that the vortex
cavitation inception will occur near the tip of the blade. It is seen that the negative
minimum pressure coefficient (- C, min) increases as the pump speed increases and the
corresponding advance coefficient decreases, i.e., the propeller loading is increased.
Comparisons of the numerical results for a wide range of non-dimensional pump speeds
are summarized in Table 6. The advance coefficient J is a dimensionless number
associated with the propeller design condition, which is the ratio of fluid average velocity
(Uayg) to the product of pump speed (n) and propeller diameter (D), that is, J = U,y /(N
Dorop).  These results are consistent with the literature data (Hsiao and Pauley, 1999). The
pressure coefficient (C,) is a dimensionless parameter defined by the reference pressure
(Prer) and the reference dynamic pressure (Qx). Thatis,

Cp — (P ér:ref ) (10)

In eq. (5), Q. is defined in terms of the reference velocity (Vie).
Qrer = 0.5r fvref2 (11)

In Table 6 and Fig. 19, one atmospheric pressure and 6 m/sec flow conditions were used
as the reference values. The results shown in Fig. 19 indicate that cavitation occurs near
the leading-edge tip of the blade for the 700 and 860 rpm pump speeds, but it does not
occur for the 500 rpm speed. The 600 rpm pump speed is the critical value for the
cavitation to occur. Thus, pump speed should be decreased from 860 rpm to about 500
rpm, which is close to the original design speed 440 rpm of the FLYGT mixer, if cavitation
needs to be avoided for the structural vibration or stability of the mixer. The cavitation line
shown in the figure is based on the saturation pressure of vapor corresponding to the
room temperature water, although real flow effects such as random turbulent fluctuation
and water quality are known to influence cavitation inception. Figure 20 shows the
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distributions of the fluid vorticity, defined by eq. (8), along the axial direction crossing the
tip of the blade. It is noted that there are two peaks. The first peak occurs near the tip
trailing edge, and the second one is dominant near the leading-edge tip of the blade.
These results are consistent with the literature observations (Knapp et al., 1970).

Turbulence intensity contour plots at the plane of the leading-edge tip are shown for three
different rotational speeds of the FLYGT mixer in Fig. 21. The turbulence intensity is
defined as the ratio of the root-mean-square of the velocity fluctuations, u’, to the mean
flow velocity, ua,q. When pump speed increases from 600 rpm to 860 rpm under 9,000
gpm of nominal flow condition, the turbulence intensity changes from 34% up to 50% as
shown in Fig. 21 (note that color scales change for each plot.).

As discussed earlier, the present model consists of three major regions as a modeling
domain. They are propeller blade, hub (shaft region), and shroud regions. Under the
steady-state model, phase change is not allowed even for the cavitating situation near the
tip of the blade. However, the transient model allows phase change of liquid fluid when
system pressure is below the vapor pressure corresponding to the fluid temperature.
Detailed static pressure distributions at the downstream region of the blade are shown in
Fig. 22. Highest pressure is at the downstream side of the leading-edge tip of the
propeller blade, but lowest pressure is at the upstream side of the blade tip as discussed
earlier. Figure 22 shows the viscous shear stress contour plot on the blade surface.

Typical flow pattern near the propeller region for 9,000 gpm nominal flow and 860 rpm
pump speed is presented in Fig. 24. Flow is entering the propeller zone in a convergent
way and then reaches maximum velocity in the radial direction at the tip of the propeller
blade. After leaving the propeller region the fluid flows in a divergent direction. Near the
leading tip region of the propeller a large local vortex was generated, which is consistent
with the experimental observation in the literature (Knapp et al., 1970). Vorticity contour
plot near the blade of the propeller is shown in Fig. 25. Vorticity contour plot near the hub
zone of the propeller is presented in Fig. 26. Highest vortex was produced near the blade
connection region of the hub. Static pressure and shear stress distributions corresponding
to the vorticity distribution of Fig. 26 are shown in Figs. 27 and 28.

Cavitation at the shroud wall was greatest near the upstream region of the propeller, while
compression occurred most near the downstream region of the propeller. Graphical
results for static pressure and shear stress distributions are shown in Figs. 29 and 30.

Velocity at the exit of the pump shroud is important in the assessment of the pump
performance in terms of mixing capability. In the present work a wide range of pump flow
and operating conditions were performed by using the three-dimensional pump model with
the FLYGT mixer propeller model. Results of the radial velocity distributions at the shroud
exit are shown in Fig. 31. The results showed that the location of the peak velocity moved
to the peripheral region with decreasing pump flow. A backflow region due to flow reversal
near the center of the shroud increased with decreasing flow. Figure 32 shows three-
dimensional steady-state velocity vector plots for 860 rpm and 12,000 gpm flow condition
at the inlet and exit regions of the pump shroud. It should be noted that velocity near the
center of the shroud are much lower than the peripheral velocity at the plane of the shroud
exit. This is consistent with the HLW test data (Adkins, 2000).
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Table 5. Axial forces along the flow direction for propeller, hub, and shroud regions under
wide range of steady-state pump operating conditions.

Pump operating . . .
conditions Propeller region Hub region Shroud wall region
flz\l/Jvrrrz:\rtJe Sppuergg Pressure | Viscous | Pressure | Viscous | Pressure | Viscous
N N N N N N
wom) | tom | (N) (N) (N) (N) (N)
500 -2152 8.5 35 -2.2 -16 -1.8
600 -2896 10.3 58 -1.5 -19 8.1
9,000
700 -4352 13.6 71 -1.3 -25 13.8
860 -7317 21.3 92 -0.3 -35 26.4
700 -4310 13.6 72 -1.9 -25 12.5
10,000
860 -6978 20.7 98 -0.7 -36 23.1
680 -4020 14.7 63 -3.9 -30 2.1
12,000 700 -4290 15.3 69 -3.9 -30 -0.9
860 -6255 195 111 2.7 -39 18.9
700 -4155 16.2 67 -4.8 -33 -4.8
13,000
860 -5941 20.0 118 -3.0 -39 15.1
700 -1614 23.1 189 -8.1 -39 -3.6
19,000
860 -5229 27.3 132 -9.9 -54 -11.7

(Note: Conversion factor 1 pound-force = 4.448N)

Table 6. Comparison of minimum pressure coefficients (C, min) for the advance coefficients
(J) corresponding to various rotational pump speeds.

Pump speed J Reynolds number - iy Total loading on the blades
(rpm) () (---) (---) (pound-force)
860 0.40 1.4 x 10° 10.4 1645
700 0.49 1.4 x10° 7.2 978
600 0.57 1.4 x10° 5.3 651
500 0.68 1.4 x10° 3.9 484
440 0.78 1.4 x 10° 3.0 342
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Figure 13. Typical static pressure distribution at downstream and upstream regions near
the leading-edge tip of single pump blade for 860rpm of pump rotational
speed and 9,000 gpm flow condition (Propeller blade shown in the figure

rotates clockwise and the pressure unit is pascal in gauge.).
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Figure 14. Typical fluid flow pattern and rotation profile at downstream and upstream
regions near the leading-edge tip of single pump blade for 860rpm of pump
rotational speed and 9,000 gpm flow condition (Propeller blade shown in
the figure rotates clockwise.).
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Figure 16. Radial velocity vector plots at the plane crossing the leading tip of the blade for

various rotational speeds of 9,000 gpm pump flowrate.
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Figure 17. Static pressure contour plots at the plane crossing the leading tip of the blade
for various rotational speeds of 9,000 gpm pump flowrate.
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Figure 18. Vorticity contour plots at the plane crossing the leading tip of the blade for
various rotational speeds of 9,000 gpm pump flowrate.
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Figure 21. Turbulence intensity contour plots at the plane crossing the leading tip of the
blade for various rotational speeds of 9,000 gpm pump flowrate.
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Figure 22. Static pressure contour plot on the propeller surface.
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Figure 23. Shear stress contour plot on the propeller surface.
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Figure 25. Vorticity contour plot at the pump propeller region (counterclockwise propeller
direction).
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Figure 26. Vorticity contour plot at the propeller hub region (counterclockwise propeller
direction).
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Figure 27. Static pressure contour plot at the propeller hub region (counterclockwise
propeller direction).
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Figure 28. Shear stress contour plot at the propeller hub region (counterclockwise
propeller direction).
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Figure 29. Static pressure contour plot at the shroud wall (counterclockwise propeller
direction).
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Figure 30. Shear stress contour plot at the shroud wall (counterclockwise propeller
direction).
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Figure 31. Velocity distributions along the radial direction.
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Figure 32. Velocity vector plot at the inlet and exit planes of shroud exit.
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4.2 Sensitivity Run Results

Sensitivity runs were performed by using the steady-state three-dimensional CFD model.
The primary purpose is to investigate what physical parameters have the most impact on
operating performance and system stability of the FLYGT mixer. From the steady-state
model results, physical parameters such as inlet flow conditions, shroud wall roughness,
and rotational speed of pump were chosen for the sensitivity studies.

- Non-uniform Inlet Flow Condition

This situation was simulated to examine the impact on the shroud exit velocity of non-
uniform inlet velocity for the flow blockage caused by the motor housing upstream of the
pump propeller. Non-uniform velocity was tested with an assumption that velocity around
motor housing increased linearly along the flow direction toward the propeller region. That

= Li 375 (@ + bx)dx (10)

Constants a and b in the above integral, eq. (10), were determined by using the boundary
condition u, (x = 0)=0and the flow continuity Q(total volumetric flowrate) =u,,qA.

Uayvg IS area-averaged radial velocity at the inlet of the mixer. The area-averaged speeds
for potential flow conditions are shown in Table 2. Detailed flow direction and notations
used in the above equation are shown in Fig. 33. This non-uniform condition was based
on the assumption that azimuthal velocity gradients at both sides of the symmetry planes
in 120° sector geometry of the mixer, as shown in Fig. 3, are zero. For these studies,
typical operating conditions were chosen as two different operating flows (9,000 and
12,000 gpm) with 860 rpm pump speed.

The results showed that at shroud exit radial flow distributions for non-uniform inlet
condition is a little bit more uniform than those of uniform inlet flow condition. The
sensitivity results are shown in Fig. 34. Total loads for the three components of the mixer
with non-uniform inlet flow are about 7% lower than those of uniform inlet flow for the
operating conditions of 12,000 gpm flow with 860 rpm pump speed. Three-dimensional
velocity flow pattern near the inlet and the shroud exit regions is shown in Fig. 35.
However, for 9,000 gpm pump flow with 860 rpm pump speed, loads for non-uniform inlet
flow are close to those of uniform inlet flow. The detailed comparison of the two cases is
shown in Table 7.
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Figure 34. Sensitivity run results for axial flow velocities at shroud exit for 12,000 gpm
pump flow and 860 rpm pump speed.
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Table 7. Influence of inlet flow non-uniformity on the axial loads of pump blade, shaft, and
shroud wall regions under steady-state operating conditions of two different flows
with 860 rpm pump speed.

Pump flow | Shroud wall Loads by Components
(gpm) surface hydraulics Blade Shaft Shroud
conditions (pound-force) | (pound-force) | (pound-force)
Uniform inlet Pressure -1645.3 20.7 -7.9
9,000 flow Viscous 4.8 -0.1 6.0
Non-uniform Pressure -1639.1 19.5 -7.8
inlet flow Viscous 4.8 -0.1 6.0
Uniform inlet Pressure -1406.3 25.0 -8.8
12,000 flow Viscous 4.4 -0.6 4.2
Non-uniform Pressure -1309.6 23.7 -8.2
inlet flow Viscous 4.3 -0.5 3.9

- Shroud Wall Roughness

One of the major concerns is the structural vibration and sturdiness associated with
loading due to the high-speed pump operation. As mentioned earlier, shroud design was
recently modified and tested at the TNX full tank facility (Adkins, 2000). The modifications
were made in response to multiple mechanical failures. A major modification was a new,
single-piece, machined shroud to improve mixer reliability. With the new geometry,
loading sensitivity of the shroud needs to be examined based on the surface roughness of
the shroud inner wall being smooth or rough. A rough wall condition was simulated as a
concrete surface whose roughness height was 0.01 ft (Rohsenow and Choi, 1961 ).
Maximum velocity was decreased by about 4% due to turbulence increase compared to
the smooth surface. Load of the shroud was increased by about 2% compared to the
smooth surface of the shroud wall. Results are compared between two cases in Table 8.
The graphical results are shown in Fig. 36.

Table 8. Influence of shroud wall roughness on the axial loads of pump blade, shaft, and
shroud wall regions under 9,000 gpm flow and 860 rpm pump speed of steady-
state operating condition.

Shroud wall surface | Loads by Components
conditions hydraulics Blade Shaft Shroud
(pound-force) | (pound-force) | (pound-force)
Smooth surface Pressure -1645.3 20.7 -7.9
Viscous 4.8 -0.1 6.0
Rough surface Pressure -1677.5 20.5 -8.3
(roughness = 0.01ft) ™\, s 4.7 0.1 19.4
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Figure 35. Velocity vector plot at the inlet and exit planes for non-uniform inlet flow
condition.
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Figure 36. Sensitivity run results for surface roughness effects of shroud wall on axial flow
velocities at shroud exit (Roughness height of rough wall used in this figure
was 0.01ft equivalent to concrete surface.).

- Pump Rotational Speed

From the TNX test (Adkins, 2000) of the modified design, as mentioned earlier, overall
vibration levels on the motor and shroud were high compared to industry standards for
rotating machines such as pumps. Vibration testing with variable speed revealed a
dramatic increase (3 to 4 times) in motor and shroud vibration between 700 and 860 rpm.
A pump speed of 860 rpm corresponds to about 42 periodic cycles. This large increase in
vibration appears to be the result of a system natural frequency (about 40 periodic cycles).
The model predicted that the maximum axial velocity for 700 rpm at the shroud exit was
slightly decreased compared to that of 860 rpm as shown in Fig. 37. However, loads on
the pump were found to be very sensitive to the rotational speeds of the pump. Table 9
shows the model results for 500 to 860 rpm ranges of the motor speed. These results are
qualitatively consistent with the HLW test results (Adkins, 2000) in a qualitative way.

Table 10 summarizes typical sensitivity results obtained from the present study. As
expected, the results showed that pump speed is the most sensitive parameter among the
three parameters in terms of loading change for the pump system during steady-state
operation.
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Figure 37. Sensitivity run results for pump speed effects on axial flow velocities at the exit
of the pump shroud under 9,000 gpm flow and 860 rpm pump speed.

Table 9. Influence of rotational pump speed on the axial loads of pump blade, shaft, and
shroud wall regions under 9,000 gpm flow of steady-state operating condition in a
smooth shroud wall.

Pump rotational Loads by Components
speed hydraulics Blade Shaft Shroud
(rpm) (pound-force) | (pound-force) | (pound-force)
500 Pressure -483.9 7.8 -3.6
Viscous 1.9 -0.5 -0.4
600 Pressure -651.1 12.9 -4.2
Viscous 2.3 -0.3 1.8
200 Pressure -909.6 16.9 -5.7
Viscous 3.1 -0.4 2.8
860 Pressure -1645.3 20.7 -7.9
Viscous 4.8 -0.1 6.0
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Table 10. Summary of load sensitivities to the changes of the physical parameters for the
propeller blade for 9000 gpm flow and 860 rpm operating condition (Negative
number means decrease in load.).

Roughness change
of shroud wall
surface

Change of inlet flow
Parameters distribution

Change of rotational pump
speed (rpm)

(from uniform to non-uniform) | (from smooth to rough*) | from 600 to 860 |From 700 to 860

Relative %

10 o,
change <-1% +2 % + 153 % +81%

Note: *Rough surface corresponds to rough concrete surface (0.01ft of roughness height
(Rohsenow and Choi (1961)).

4.3 Transient Flow Behavior of FLYGT Mixer Associated with
Pump Cavitation

Cavitation is generally caused by fast-moving bodies in liquid , either with a free surface
(propeller) or in closed conduits (pump impeller). The word “cavitation” is used in the
literature to signify either the hydrodynamic phenomenon of the formation of vapor-filled
bubbles or cavities at low pressures and the subsequent disappearance of such bubbles,
or the physical damage to materials which form the boundaries of the fluid passages in
which this bubble formation occurs and it is carried away by the liquid phase.

In this report, attention is limited to the hydraulically controlied vapor generation
phenomenon. That is, vapor bubble formation is caused by pressure reduction within the
water at room temperature. By this usage, an object such as a pump blade is said to
cavitate if such vapor bubbles are formed, even though no physical damage occurs. It is
assumed that cavitation will occur whenever the pressure at some point in the fluid
becomes equal to the vapor pressure. Local boiling results in vapor-filled cavities which
grow so long as they are in a low-pressure environment. Assuming the inception of
cavitation when the pressure equals the vapor pressure exactly implies that the fluid will
not support a tension and ignores the possibility of dissolved gases being released to
cause premature cavitation at pressures higher than the vapor pressure. Nevertheless,
there is considerable experimental information to indicate that with water containing
ordinary amounts of impurities and dissolved air, cavitation does occurs at pressures that
are very close to the vapor pressure.

In the literature experiment (Wood, 1963), the cavitation formations in the vane channels
of the pump impellers were observed to be cyclic in nature, whereas the cavitation near
the leading edge of the blade was more stable. It was noted that the observed cyclic
behavior might be the principal source of noise and vibration in cavitating hydraulic
machinery. The cavitation formations associated with loss of hydraulic perfformance were
cyclic in nature. The cavitation was observed to occur initially near the tip leading edge of
the blades for the axial mixed flow pump impellers tested (Wood, 1963). Thus, cavitation
initiated by the tip vortex may be the principal cause of performance deterioration. These
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phenomena are consistent with the present CFD resuits as shown in the subsequent
figures.

The primary objective of the transient cavitation model is to evaluate the changes in
nominal loads introduced by a sudden change in fiuid density from the cavitation
development near the tip of the propeller blade and to investigate the time-dependent
behavior of the high-speed mixer performance. As mentioned earlier, the bubble
condensation effect in the model was neglected since bubble residence time in the 20”
shroud was assumed to be very short and all cavitation bubbles inside the shroud
remained tiny (less than 1 mm from the literature data) and bubbly flow. No slip velocity
between the two phases was assumed.

All transient simulations in this report used 12,000 gpm flowrate and 860 rpm pump speed
as pump operating condition in 20” long, single-piece, smooth shroud. Steady-state
results without interphase mass transfer due to cavitation effect were used as initial pump
condition. Figure 38 shows the transient response of total velocity along the radial
direction at the plane of shroud exit. Transient response of axial velocity along the radial
direction at shroud exit, in relation to the pump performance, is shown in Fig. 39.
Transient model results showed that transient flow velocity developed to steady-state
condition within about 1 second, corresponding to about 40 cycles of the propeller blade
after the initiation of cavitation.

Transient response of total pressure load for all the three blades of pump propeller are
presented in Fig. 40. During initial period of transient time, the load on the blades
increased rapidly and then was established to steady-state in about 1 second. Figure 41
shows transient loads of the hub region for 12,000 gpm and 860 rpm operating conditions.
Transient response of the shroud load is shown in Fig. 42.

Transient flow behaviors of the FLYGT mixer such as fluid pressure, density distributions,
fluid velocity, and vorticity are important in relation to the deterioration of pump
performance and system stability since, in reality, fluid flow behavior is closely coupled
with structural stability of the system such as pump vibration and noise. The results for the
key fluid parameters related to the operating performance of the mixer are presented in
Fig. 43 through 46. The results showed that cavitation occurred due mainly to the fluid
vortex near the leading-edge tip of the propeller blade. It is noted that a low density region
was established near the peripheral region adjacent to the shroud wall because all vapor
bubbles generated as a result of cavitation migrated to the high-velocity fluid region near
the tip of the blade.

From the transient cavitation model, transient flow and loading behaviors of the mixer were
examined for two different pump speeds (860 rpm and 700 rpm) under the same flow
(12,000 gpm) condition. The results showed that the transient time for 700 rpm pump to
reach steady-state condition is longer by about 0.5 second, corresponding to 20 cycles of
the blade, than that of the 860 rpom pump. The transient results for the velocity profiles at
the shroud exit and the loading at the propeller blade are shown in Figs. 47 and 48.
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Figure 38. Transient response of flow velocity along the radial direction of the shroud exit
plane for 12,000 gpm and 860 rpm operating condition.
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Figure 39. Transient response of axial flow velocity along the radial direction of the shroud
exit plane for 12,000 gpm and 860 rpm operating condition.
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Figure 40. Transient response of total pressure force for three propeller blades under
12,000 gpm and 860 rpm operating condition.
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Figure 41. Transient response of pressure force for hub under 12,000 gpm and 860 rpm

operating condition.
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Figure 42. Transient response of pressure force for shroud wall under 12,000 gpm and
860 rpm operating condition.
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Figure 45. Transient response of fluid velocity at leading edge plane of the propeller tip.
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Figure 46. Transient response of fluid vorticity at leading edge plane of the propeller tip.
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Figure 47. Transient velocity distributions at the exit of the shroud for 700 rom pump
speed and 12000 gpm flow condition.
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5. Conclusions

The present analysis took two modeling approaches with a Computational Fluid Dynamics
(CFD) method. They are steady-state pump model and transient cavitation model
considering density change effect due to local cavitation. The computations were
performed for a three-dimensional detailed model of the FLYGT mixer with the prototypic
propeller shape. The models mainly include propeller region, inlet region upstream of the
propeller, and downstream shroud region as a computational domain. The general
characteristics of the propeller flow including the blade-to-blade rotational flow, cavitation
with tip vortex, and flow pattern at shroud exit were well predicted by the present CFD
method using computational domain of one-third FLYGT mixer for better computational
efficiency.

From the analysis results for the three-dimensional models of the Tank 19 FLYGT mixer,
the following conclusions are drawn:

1. Nominal operating conditions were measured by the pitot-tube test data (Adkins,
2000). Comparisons with calculated results showed that nominal pump flow conditions
were about 9000 gpm, and pump flow distribution was not sensitive to rotational speed
of the mixer (600 to 860 rpm), which is consistent with the test data.

2. From the results of the present detailed model and the previous wall jet model, the
pump with a 20” long modified shroud showed reasonable flow performance at the exit
of the shroud in terms of backflow prevention and mixing capability.

3. The detailed steady-state model results showed that load for each of the three major
component (propeller blade, hub and shroud) of the mixer increased as speed of the
mixer increased. It was noted that cavitation occurred near the leading-tip of the pump
blade and the degree of cavitation increased rapidly with pump speed increase.

4. The steady-state results show that cavitation doesn’t occur for 9,000 gpm flowrate
when the pump speed is lower than 500 rpm. This is consistent with the original blade
design of the FLYGT mixer to avoid the cavitation. The original design speed was 440
rpm.

5. From the sensitivity study, it was noted that the pump speed was a sensitive parameter
for the load for each pump component, but it was not sensitive for the pump flow
performance. The propeller blade has the largest load among the three components of
the FLYGT mixer under a wide range of pump operating conditions.

6. The transient results showed that transient pump behaviors such as change of fluid
density and loadings of mixer were developed to steady-state conditions within about 1
second, corresponding to about 40 cycles of the propeller blade after the initiation of
the pump cavitation. In addition, a low density region was established near the
peripheral region adjacent to the shroud wall because all bubbles generated as a result
of cavitation migrated to the high-velocity fluid region near the tip of the blade.
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6. Recommendations

From the detailed model and the previous two-dimensional wall jet model, it was noted
that the pump speed could be decreased without reducing the flow performance of the
mixer under the current 20” single-piece machined shroud. From the present steady-state
results, it is recommended that the pump speed decrease from 860 rpm down to about
500 rpm when cavitation needs to be avoided for better pump performance.

The present model used azimuthal symmetrical assumption at the inlet region. One third of
the mixer was modeled by using symmetrical planes at both-end sides of the model for
computational efficiency. Thus, the present model can not predict non-uniform inlet flow
condition in an azimuthal direction. In reality, non-uniform water flow and air entrained by
a vortex at the inlet region may cause periodical choking before entering the propeller
region.

It is recommended that the current 120° symmetry, single-blade model be extended to a
three-blade mixer with the tank bottom and free liquid surface (about 4ft level) included in
the full three-dimensional computation domain. Thus, boundary conditions at the pump
inlet for the CFD model would be closer to the real situation, which is non-uniform flow
distribution at the screen inlet due to the flow blockage and due to the presence of the tank
bottom. This change would allow us to:

1. Remove the fixed flow boundary condition at the pump inlet.
2. Analyze pump performance as a function of operating speed.
3. Determine the optimum operating point for the existing propeller shape.

This model could also simulate three-dimensional axial flow dissipation after the shroud
exit above the tank bottom to assess mixing performance. The current two-dimensional jet
model has been used to estimate this performance, but it can not capture the physics of
three-dimensional swirling phenomena.
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